

Challenging wind and waves

Linking hydrodynamic research to the maritime industry

Structural reality @ scale 9 February 2012 Ingo Drummen (MARIN)

INTRODUCTION

Ships are getting longer

Many large and ultra large container vessels have entered operation

INTRODUCTION

Today's largest CS

- 15200TEU
- 397.71m long
- 56m wide
- 15.5m draft

 An ultra-large CS of 20250TEU would measure 440m

HULL FLEXIBILITY

source: youtube

- What is the deflection amidships of a 300m containership in sagging conditions between two wave crests?
- A: 5mm
- B: 5cm
- C: 0.5m
- D: 5m

- 75000tons
- 300m long
- Cross sectional moment of inertia 285m⁴

$\frac{5}{384} \frac{qL^4}{EI} = \frac{5}{384} \frac{75 \cdot 10^6 \cdot 9.81 \cdot 300^3}{6 \cdot 10^{13}} = 4.3m$

Answer D

- Larger size ships
 - implies increased hull flexibility
- Severe slamming can occur
 - if ships operate in harsh weather and/or
 - at high speed
- Combination of slamming and flexibility
 - increases the design load effects

INCREASED FATIGUE LOADS

- Whipping contribution
- Springing contribution
- n source: Faltinsen (2005)
- Springing is resonant vibration
 - of the two node mode
- Springing occurs for large ships
 - wave frequencies not high enough for resonance of small ships

SPRINGING

Increasing size

$$f = 3.57 \sqrt{\frac{EI}{\rho AL^4}} \sim L^{-2}$$

- Decreasing natural frequency
- Increasing springing probability

$$\begin{split} n\omega_e &= \omega_s \\ \omega_e &= wave \ encounter \ frequency \\ \omega_s &= natural \ frequency \\ of \ the \ two \ node \ mode \end{split}$$

SPRINGING EXAMPLE

- Containership with a length: 300m
- Natural frequency flexural two node: 0.5Hz
- Linear springing at 20kn:

$$\omega = \frac{-1 \pm \sqrt{1 + 4U/g} \omega_e}{\frac{2U/g}{g}} = \frac{-1 \pm \sqrt{1 + 4*10.288/9.81}*\pi}{\frac{2*10.288}{9.81}} = 1.45 rad/s$$

- Wave period: 4s
- Seconds order springing occurs for

$$\omega = \frac{-1 \pm \sqrt{1 + 4U/g} \omega_e}{2U/g} = \frac{-1 \pm \sqrt{1 + 4^* 10.288/9.81^* \pi} / 2}{2^* 10.288/9.81} = 0.92 \, rad/s$$

Wave period: 7s

- What is the relative importance of fatigue damage due to wave-induced vibrations of the lowest flexural modes of a 300m container ship?
- A: 0-25%
- B: 25-50%
- C: 50-100%
- D: >100%

- Aalberts and Nieuwenhuijs (2006): 25% for a small container vessel
- Moe et al. (2005): 50% for a containership of 285m
- Drummen et al. (2008): 40% for a containership of 300m
- Answer B

THREE CATEGORIES OF FATIGUE DAMAGE

- Total damage: damage due to the total stress history
- Wave frequency (WF) damage: damage due to the wave frequency stresses
- High frequency (HF) damage: difference between total damage and WF damage

THREE CATEGORIES OF FATIGUE DAMAGE

WHY IS HF DAMAGE IMPORTANT?

WHY IS HF DAMAGE IMPORTANT?

DRUMMEN ET AL. (2008)

16 sea states investigated (North Atlantic)

DRUMMEN ET AL. (2008)

Results were combined

Hull flexibility should be accounted for

- in ship design
- Methods are available
 - for linear wave- and high-frequency stresses
- The challenge is to understand:
 - nonlinear hydrodynamic load mechanisms that cause high-frequency load effects
 - damping mechanisms

MODEL TESTS WITH 300M CONTAINERSHIP

springing

whipping

CONCLUSION

THREE WAYS OF INCORPORATING FLEXIBILITY

- Fully flexible model
- Segmented model
- Combination between:
 - rigid physical model
 - finite element model

FULLY FLEXIBLE MODEL

Advantages

- good representation of reality
- Disadvantages
 - difficult to built, flexibility needs to be scaled strength should be enough
 - expensive to built

SEGMENTED MODEL

- Flexible backbone
- Flexible joints

SEGMENTED MODEL WITH FLEXIBLE JOINTS

SEGMENTED MODEL WITH FLEXIBLE JOINTS

- Advantages
 - natural frequency can be tuned
- Disadvantages
 - difficult to built for VBM, HBM and torsion
 - cuts are expensive
 - discrete stiffness

COMBINATION PHYSICAL AND FE MODEL

- Rigid model in basin
- Many pressure gauges
- Pressures on FE model
- Advantages
 - flexibility
- Disadvantages
 - sufficiently detailed FE model is needed

- Goal is to build a model that has the same modal parameters as the ship
- Modal parameters
 - mode shapes
 - natural frequency
- Modeling up to
 - 2 and 3 node horizontal and vertical
 - torsion can also be modeled

Rigid segments connected to a flexible beam

- Beam controls (noncontinuous) stiffness
- Segments control mass

Usually 5 or 6 segments

- How deep should the cut in a beam (d=110mm, t=2.5mm) be to achieve a local stiffness reduction of 30%?
- A: 2mm
- B: 5mm
- C: 20mm
- D: 30mm

ANSWER 3

Answer A

Advantages

- inexpensive solution
- natural frequency can be tuned, but not as elegant as with flexible joints
- Disadvantages
 - difficult to incorporate torsion
 - measurements and weakening preferably at same location

TAILORED LIFETIME ASSURANCE

 MARIN goal: tailored lifetime assurance during the design and operational stages

TAILORED LIFETIME ASSURANCE – NUMERICAL DESIGN

- Preliminary fatigue design method
 - length, breadth, draft, ...
- Linear method I
 - geometry, mass dist., global structure, ...
- Linear method II
 - geometry, mass dist., FE model, ...

SPECTRAL FATIGUE CALCULATION

$$S_{\zeta}(\omega) = \frac{320 \cdot H_{1/3}^2}{T_p^4} \cdot \omega^{-5} \cdot \exp\left\{\frac{-1950}{T_p^4} \cdot \omega^{-4}\right\}$$

SPECTRAL FATIGUE CALCULATION

 $S_R(\omega) = [\Phi_R(\omega)]^2 S_{\zeta}(\omega)$

SPECTRAL FATIGUE CALCULATION

S_C(ω) $S_R(\omega) = [\Phi_R(\omega)]^2 S_{\zeta}(\omega)$ Frequency Domain Eregy Density Section Phases discarded $\overline{D} = \frac{n_0}{a} (2\sqrt{2}\sigma)^m \Gamma\left(\frac{m}{2} + 1\right)_{\text{scatter diagram}}$ Source: Offshore 8.5 Hydromechanics, 7.5 TUDelft course notes 6.5 Time Domain 4 1 5.5 HS_{4.5} Measured Wave Record 5 2 3.5 2.5 1.5 0.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 Τz

 $\overline{D}_{LT} = \int_{H_s} \int_{T_p} \int_{U} \int_{\beta} T_{LT} \overline{D}_{H}(h, t, u, \beta) f_{H_s, T_p, U, \beta}(h, t, u, \beta) \, dh \, dt \, du \, d\beta$

PRELIMINARY FATIGUE DESIGN METHOD

$$S_R(\omega) = \sum_{\theta} [\Phi_R(\omega, \theta)]^2 S_{\zeta}(\omega, \theta)$$

- Linear theory
 - using universal RAO $\Phi_R(\omega, heta)$
- Corrections
 - for weak and strong NLs
- Input
 - principle dimensions
 - empirical factors for NLs

LINEAR METHOD I

- Geometry and mass distribution
- Hydrodynamic calculations
 - can be done with 2D or 3D method
- Section modulus
 - estimated based on global ship structure
- $\Phi_R(\omega, \theta)$ = VBM divided by section modulus

$$S_R(\omega) = \sum_{\theta} [\Phi_R(\omega, \theta)]^2 S_{\zeta}(\omega, \theta)$$

LINEAR METHOD II

Finite element model

- also available
- $\Phi_R(\omega, \theta)$ = stress transfer functions

- Above methods rely on scatter diagram
- No scatter diagram used
 - in scenario simulations
- This has several potential merits

- Accounting for the joint occurrence of wind sea, swell, current and wind velocity
- Accounting for the reaction of the master on:
 - changes in the adopted course and power
 - unexpected large delay
- Memory effects:
 - reaction of the master on past and anticipated conditions
 - effect of speed loss and delay on the duration

Applicable for all three methods

OPERATIONAL STAGE

- Encountered conditions differ
 - from design conditions
- Advisory hull monitoring system installed to
 - determine lifetime during operations
 - explain differences with design

MARIN P.O. Box 28 6700 AA Wageningen The Netherlands T +31 317 49 39 11 F +31 317 49 32 45 E info@marin.nl I www.marin.nl

