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• Ships are getting longer 

 

 

 

 

 

• Many large and ultra large container 
vessels have entered operation  

 



INTRODUCTION 
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• Today's largest CS 

• 15200TEU  

• 397.71m long 

• 56m wide 

• 15.5m draft 

• An ultra-large CS of 20250TEU would 
measure 440m  

 

15000 TEU MV Edith Maersk , Emma Maersk class 
Source: wikipedia 

//upload.wikimedia.org/wikipedia/commons/0/00/Edith_Maersk_Suez.jpg


HULL FLEXIBILITY 
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source: youtube 



QUESTION 1 
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• What is the deflection amidships of a 300m 
containership in sagging conditions 
between two wave crests? 

• A: 5mm 

• B: 5cm 

• C: 0.5m 

• D: 5m 

 
source: Faltinsen (2005) 
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• 75000tons 

• 300m long 

• Cross sectional moment of inertia 285m4 

 

 

 

 

 

• Answer D 



INCREASED EXTREME LOADS 
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• Larger size ships  

• implies increased hull flexibility 

• Severe slamming can occur 

• if ships operate in harsh weather and/or 

• at high speed 

• Combination of slamming and flexibility  

• increases the design load effects 

 



INCREASED FATIGUE LOADS 
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• Whipping contribution 

• Springing contribution 

• Springing is resonant vibration 

• of the two node mode 

• Springing occurs for large ships   

• wave frequencies not high enough for 
resonance of small ships 

 

 

source: Faltinsen 
(2005) 



SPRINGING 
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• Increasing size 

• Decreasing natural frequency 

• Increasing springing probability 
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SPRINGING EXAMPLE 
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• Containership with a length: 300m 

• Natural frequency flexural two node: 0.5Hz 

• Linear springing at 20kn:  

 

 

• Wave period: 4s  

• Seconds order springing occurs for 

 

 

• Wave period: 7s 
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QUESTION 2 
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• What is the relative importance of fatigue 
damage due to wave-induced vibrations of 
the lowest flexural modes of a 300m 
container ship? 

• A: 0-25% 

• B: 25-50% 

• C: 50-100% 

• D: >100% 



ANSWER 2 
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• Aalberts and Nieuwenhuijs (2006): 25% for 
a small container vessel 

• Moe et al. (2005): 50% for a containership 
of 285m  

• Drummen et al. (2008): 40% for a 
containership of 300m 

• Answer B 

 

 



THREE CATEGORIES OF FATIGUE DAMAGE 
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• Total damage: damage due to the total 
stress history 

• Wave frequency (WF) damage: damage 
due to the wave frequency stresses 

• High frequency (HF) damage: difference 
between total damage and WF damage 



THREE CATEGORIES OF FATIGUE DAMAGE 
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WHY IS HF DAMAGE IMPORTANT? 
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Damage = 0.356·10-6 

Damage = 0.007·10-6 

Damage = 1.102·10-6 

Damage = 1  failure 



WHY IS HF DAMAGE IMPORTANT? 
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D = 0.356·10-6  DWF = 0.356·10-6  

D = 0.007·10-6 

D = 1.102·10-6  DT = 1.102·10-6  

DHF = 1.102·10-6 - 0.356·10-6 = 0.746·10-6  



DRUMMEN ET AL. (2008) 

17 

• 16 sea states investigated (North Atlantic)    
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DRUMMEN ET AL. (2008) 
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WF damage 63% 

HF damage 
   due to wave-induced vibrations 

37% 

Life time fatigue damage 

• Results were combined    

• with total time in each sea state  

 

 



CONCLUSION 
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• Hull flexibility should be accounted for  

• in ship design 

• Methods are available  

• for linear wave- and high-frequency stresses 

• The challenge is to understand:  

• nonlinear hydrodynamic load mechanisms 
that cause high-frequency load effects  

• damping mechanisms 

 



MODEL TESTS WITH 300M CONTAINERSHIP 
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Calculations

Experiments

whipping springing 



CONCLUSION 
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Model tests where 

flexibility is 

incorporated are 

necessary 



THREE WAYS OF INCORPORATING FLEXIBILITY 
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• Fully flexible model 

• Segmented model 

• Combination between: 

• rigid physical model 

• finite element model 

 



FULLY FLEXIBLE MODEL 
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• Advantages  

• good representation of reality 

• Disadvantages  

• difficult to built, flexibility needs to be scaled 
strength should be enough 

• expensive to built 

 

 



SEGMENTED MODEL 
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• Flexible backbone 

• Flexible joints 

 



SEGMENTED MODEL WITH FLEXIBLE JOINTS 
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SEGMENTED MODEL WITH FLEXIBLE JOINTS 
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•  Advantages  

• natural frequency can be tuned 

• Disadvantages  

• difficult to built for VBM, HBM and torsion 

• cuts are expensive 

• discrete stiffness 

 

 



COMBINATION PHYSICAL AND FE MODEL 
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• Rigid model in basin  

• Many pressure gauges 

• Pressures on FE model 

• Advantages  

• flexibility 

• Disadvantages  

• sufficiently detailed FE model is needed 

 

 



SEGMENTED MODEL WITH FLEXIBLE BACKBONE 

28 

• Goal is to build a model that has the same 
modal parameters as the ship 

• Modal parameters  

• mode shapes 

• natural frequency 

• Modeling up to  

• 2 and 3 node horizontal and vertical 

• torsion can also be modeled 

 
 



SEGMENTED MODEL WITH FLEXIBLE BACKBONE 
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• Rigid segments connected to a flexible 
beam 

 

• Beam controls (noncontinuous) stiffness 

• Segments control mass 

 
 

 

 

 



SEGMENTED MODEL WITH FLEXIBLE BACKBONE 
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• Usually 5 or 6 segments 

 

 

 

 

• Local weakening to fine tune natural 
frequencies 

 
 



QUESTION 3 
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• How deep should the cut in a beam 
(d=110mm, t=2.5mm) be to achieve a local 
stiffness reduction of 30%? 

• A: 2mm 

• B: 5mm 

• C: 20mm 

• D: 30mm 

 



ANSWER 3 
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• Answer A 



SEGMENTED MODEL WITH FLEXIBLE BACKBONE 
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• Advantages  

• inexpensive solution 

• natural frequency can be tuned, but not as 
elegant as with flexible joints 

• Disadvantages  

• difficult to incorporate torsion 

• measurements and weakening preferably at 
same location 

 

 



TAILORED LIFETIME ASSURANCE 
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• MARIN goal: tailored lifetime assurance 
during the design and operational stages 

 

 

 



TAILORED LIFETIME ASSURANCE – NUMERICAL DESIGN 
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• Preliminary fatigue design method  

• length, breadth, draft, … 

• Linear method I  

• geometry, mass dist., global structure, … 

• Linear method II  

• geometry, mass dist., FE model, … 

 

 



SPECTRAL FATIGUE CALCULATION 
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SPECTRAL FATIGUE CALCULATION 
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SPECTRAL FATIGUE CALCULATION 
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PRELIMINARY FATIGUE DESIGN METHOD 
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• Linear theory  

• using universal RAO 

• Corrections  

• for weak and strong NLs 

• Input  

• principle dimensions 

• empirical factors for NLs 



LINEAR METHOD I 
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• Geometry and mass distribution 

• Hydrodynamic calculations 

• can be done with 2D or 3D method 

• Section modulus 

• estimated based on global ship structure 

•                  = VBM divided by section modulus 

 



LINEAR METHOD II 
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• Finite element model 

• also available 

•                  = stress transfer functions 
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SCENARIO SIMULATIONS 
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• Above methods rely on scatter diagram 

• No scatter diagram used 

• in scenario simulations 

• This has several potential merits  



SCENARIO SIMULATIONS 
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• Accounting for the joint occurrence of wind sea, 
swell, current and wind velocity  

• Accounting for the reaction of the master on: 

• changes in the adopted course and power 

• unexpected large delay  

• Memory effects: 

• reaction of the master on past and anticipated 
conditions 

• effect of speed loss and delay on the duration 



SCENARIO SIMULATIONS 
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• Applicable for all three methods 



SCENARIO SIMULATIONS 
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SCENARIO SIMULATIONS 
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SCENARIO SIMULATIONS 
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SCENARIO SIMULATIONS 

48 

0 

0 

1 

1 

How much of the 
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been consumed? 



SCENARIO SIMULATIONS 
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OPERATIONAL STAGE 
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• Encountered conditions differ 

• from design conditions  

• Advisory hull monitoring system installed to 

• determine lifetime during operations 

• explain differences with design  

 

 

 




